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CHAPTER 1

THE EcoNoMETRICS OF CROSS-SECTIONS

"As Economies pushes beyond 'statice'
it becomes less like Science and more
like History"

Sir John Hicks

Causality in Economics

1.1 INTRODUCTION

For the statistical analysis of economic models, three types of

data are used: cross-sectional, time-series and panel data.

Cross-sectional data consists of a set of observations
on a group of entities from a defined population. These

entities are typically micro decision-making units in an

economy (e.g., consumers). The observations are obtained
by 'interviewing', at a particular time, the totality of the
given population (i.e., by carrying out a census) or by

'interviewing' only a subgroup of it (i.e., by carrying out

a sample survey).

Time-series data comprises a set of observations during
a sequence of time periods on a given entity. This is often

a macro entity (e.g., a country). The time period can be a
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year, a quarter, a month or a week. Here the observations

are usually successive and equally spaced in time.

Panel data consists of time-series observations on a
set of cross-sectional entities (e.g., a time-series of T
years of observations on production, capital and labour for

a cross-section of N industries).

Various problems that arise in econometric analysis are specific

to the kind of data we are to use. For example, if we are to use cross-—

sectional data, then we may have some choice as to the way in which this
data is to be obtained (i.e., choice Dfﬂsample design); also, we may
have to deal with a problem of data confidentiality. In addition, for
the estimation stage of the model, we usually may assume serially
independent disturbances. This is in contrast with the problems that
arise when using time-series, where the data is typically given and

where we would often have to deal with serially correlated disturbances.

In this thesis we concentrate on some problems that arise in the
analysis of econometric models when using cross-sectional data. The

choice of this research topic was motivated by three considerations.

The firet relates to data availability. In many (primarily
developing) countries the data available for econometric studies is
cross-sectional data obtained, or to be obtained, through a census
or a sample survey.1 These data-gathering techniques allow us to

have a large amount of information on economic variables in a short

period of time. The econometric methodology employed in these

situations would therefore be that of cross-sections.

1 The non-existence of sufficiently long historical series on micro

or macroeconomic variables in these countries, would not allow
efficient time-series estimation of economic relationships.
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The second consideration arises from the recent concern to study
more closely the behaviour of micro decision-making units, even
when carrying out macroeconomic inferences. The appropriateness
of 'macro-studies' (i.e., econometric studies aiming to describe
the behaviour of macrovariables through the exclusive use of

macrorelations) in both developing and developed countries has

2

been critigized by various authors. Arguments are presented on

the grounds that relationships among economic variables should be
motivated from economic theory; this theory is often derived for
microvariables and it has been noted that results may not
necessarily hold for their macro-counterparts [e.g., for a dis-
cussion of this point in relation to demand and production function

studies see, respectively, Muellbauer (1975) and Fisher (1969);

see also Theil (1955) and Green (1964)]. It has also been argued

that, even if we were willing to regard the theory as appropriate
for the macrovariables, the exclusive use of macrorelations would
not give answers to important questions (e.g., see Orcutt (1962,
p.231)). As a result, some economists have emphasizeq the need to
develop microanalytic models of economies (e.g., see Orcutt (1962),
Goldberger and Lee (1962) and Orcutt, Watts and Edwards (1968)).

In this activity we would use extensively, although not exclusively,

the econometrics of cross-sections.

Cases do exist where the use of macrorelations has advantages over
the use of microrelations. (e.g., see Grunfeld and Griliches
(1960) and Aigner and Goldfeld (1974)).

Cross-sectional studies do not provide information on the important
question of dynamics; for this we have to look at time-series or
panel data studies.
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The third consideration refers to the view expressed by some
economists regarding the 'scientific validity' of time-series
econometric studies (e.g., see Hicks' (1980) quotation in the
beginning of this Chapter). Indeed, to some - in our opinion
pessimistic - economists, 'valid econometrics' would need to be
limited to the econometrics of cross—sections.k
These three considerations led us to value the study of problems
that arise in the econometric analysis of cross-sectional data. In the
next section we give necessary definitions, introduce the model to be
considered initially and state some assumptions that are often made in

the analysis of this model. In Section 1.3 we give an overview of the

thesis.

1.2 THE MODEL AND ITS ASSUMPTIONS

A more precise definition of cross-sectional data is now given and
some notation introduced. We say we possess cross-sectional data or a
cross-gection, when we have available a set of, say N, observations

on the K+1 variables Y, Kl""’xK’ obtained at a given point in

time and which relate to a fixed date or period. These observations

correspond to N wunits or entities which belong to a defined population.
For example, the entities may be households and the defined population

may consist of the households in a geographical area. Similarly, we

may have employees in a given industry, farms in a region or banks in a

particular country. We denote by ¥i the observation on variable Y

corresponding to the i'th entity and by xi = (Xil""’xix) the

* Hicks (1980) also questions the 'scientific validity' of cross-

sectional econometric studies. We have no intention here of

debating Hicks' points (for this see Hendry (1980, p.402) and
Sims (1981)).
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1 by K vector representing the observation on xl,...,'xK, also

corresponding to the i'th entity.

We assume that - for the population under study - economic theory
suggests a relationship between Y and Xl,...,XK, and that this

relationship may be written in the form

yi - xiB+ui s (1.1

where u, is the i'th unobservable disturbance and R is a vector

of unknown parameters that is to be estimated.

Equation (1.l1) is linear in parameters and is sufficiently general

to allow the study of a wide range of models. Particular cases are

polynomial (e.g. see Theil (1971, p.155)), log-linear (e.g. see Desai
(1976, p.12)), semi-log (e.g. see Maddala (1977, p.6)), and apline

regression models (e.g. see Poirier (1976, p.10)). For instance, in

equation (1.1) we could have K = 3 with s log Qi, xil =1,

xiZ = log Ci and Xi3 = log Li’ where Qi' Ci and Li. are -

respectively - production, capital and labour for the i'th entity, say,
i'th industry. In this example, Qi, Ci and Li would be physically
observed variables and % and xi the result of some mathematical

transformation applied to the observed variables. For simplicity in

terminology, throughout the thesis, vy and xi - and not the origin-

ally observed variables - will be referred to as our observations.
Also, without loss of generality, in our discussion we will refer to

the population units or entities as individuals.

O

To provide a simple framework for our exposition, we now state

assumptions that are commonly made for the econometric analysis of the



model given by equation (1.1).

ASSUMPTION [1]: The cross=sectional data to be used,

consisting of the N vectors (yl,xi),...,(yN.xﬁ).
is given to the researcher (i.e., there is no

choice regarding which N  individuals are inter-

viewed),

ASSUMPTION [2]: The cross-sectional data is not in

aggregated form (i.e., each observation refers to

an individual). =

ASSUMPTION [3]: The disturbances u; are normally

distributed.

ASSUMPTION [4]: The disturbances u, are homoscedastic

. 2
(i.e., O] = «+v =0y where oy denotes the

variance of “i)'

ASSUMPTION [5]: The dependent variable Y may take any

value (i.e., -= < ¥y < @),

ASSUMPTION [6]: There is no parameter variation in the
population under study (so, in (1.1) the vector B8

is the same for all i =1,...,N).

ASSUMPTION [7]: The variables Xl,...,XK are fixed
(i.e., there are no current endogenous variables

among. xl,...,xK) and no other model exists with

disturbance correlated with u,.
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Each of these seven assumptions provides a topic for discussion
in the thesis. The topics are discussed under four maintained

hypotheses which we now state.
W

A first maintained hypothesis is that the model is correctly
specified, in the sense that there are no omitted deterministic

influences. This assumption is commonly made in the development

of econometric methodology. Tests for 'model misspecification' -

which is an important inferential problem in econometrics - have
been suggested by Ramsey (1969) and, more recently, by Hausman

(1978) and White (1980a). Additional results are indicated in

Chapter 10.

A second maintained hypothesis is serial independence of disturb-

ances. In most cross-sectional studies this would be a reascnable

assumption and we shall not deal with it here. We note, however,
that a specific situation in cross-sectional studies, where auto-
correlated disturbances may arise, is in the analysis of

geographical data. The problem has come to be known as spatial

correlation and a description of this is given by Cliff and Ord

(1973).

A third maintained hypothesis is that no relation exists between B8
and the unknown parameters that define the distribution of the

disturbances. In particular, we assume that xy is measured

without error.

Lastly, a fourth maintained hypothesis is that the rank of X is

equal to K, where X = (xl,...,xu)'.



1.3 QVERVIEW OF THE THESIS

Under the assumptions stated in Section 1.2, the model given by
equation (1.1) could ge 'optimally' estimated by Ordinary Least Squares
and inferences about the parameters could be carried out using standard
t and F tests. This is - of course - treated in detail in elementary
econometrics textbooks. Here we are concerned with the study of
econometric models, when one or more of assumptions [1] to [7] have
'questionable validity'. Basically, in each Chapter.we consider a
particular assumption and note the possible consequences when this is
invalidly made; we then discuss the problem of testing its validity
and, finally, we comment on the analysis of the model when there is
evidence that the assumption does not hold. More specifically, the

structure of the thesis - highlighting our main results - is as follows.

In Chapter 2, we concentrate on assumption [l]. We discuss the
estimation of the regression model when using census and given survey
data and study the properties of estimators - taking explicit account
of the probabilities of selection of the individuals in the sample.

We then discuss the question of sample design to obtain efficient
estimators of the regression model, and indicate the use of experimental

design results and clustering algorithms in the present setting.

In Chapter 3, we consider assuwmption [2] and discuss the problem

of efficient aggregation or grouping of observations in regression

analysis. We suggest various grouping criteria that lead to efficient

estimators of the model. We also show the usefulness of Ward's and the

K-Means clustering algorithms in the computation of an optimal

aggregation.
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In Chapter 4, we concentrate on assumption [3]. A main result here

is the suggestion of a test for disturbance normality, which is simple
to compute and has maximum asymptotic local power. The finite sample
properties of this test are also studied and it is found that it performs
with very good power, relative to other existing tests - most of which

are considerably more difficult to calculate. Our normality test is

obtained by applying the Lagrange Multiplier principle to a family of

disturbance distributions (e.g., the Pearson Family). This suggested

approach can be used in a very wide range of inferential problems and
is applied in various sections of the thesis, illustrating its use in

inferential problems. of the econometrics of cross-sections.

In Chapter 5, we consider asswmption [4]. We suggest a fully non-
constructive test for homoscedasticity, which may be used when there

is weak a-priori knowledge as to the nature or the form of the possible

heteroscedasticity. We also apply the procedure suggested in Chapter 4,

to obtain a joint test for disturbance normality and homoscedasticity.

The power of our tests is studied and found to be good relative to other

existing procedures.

In Chapter 6, we discuss qoswmption [5] and consider two limited

dependent variable (LDV) models: the Truncated model and the Tobit

model. We comment on the consequences of disturbance non-normality and

heteroscedasticity in the usual maximum likelihood estimators of these

LDV models. Also, we suggest tests for disturbance normality and/or

homoscedasticity in LDV situatioms.

In Chapter 7, we concentrate on assumption [6] and present a two
stage estimation procedure for models with systematic parameter varia-
tion. In the first stage, the individuals would be classified into

groups of homogeneous parameter values (regimes) by the use of a
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clustering criterion suggested; the second stage would consist of the

econometric estimation of the regimes.

In Chapter 8, we consider aqsswmption [7] and extend some of our
inferential results to simultaneous equations models. We suggest tests
for multivariate normality, multivariate homoscedasticity and for

parameter variation.

In Chapter 9, we present an illustration of some of the results
obtained in previous Chapters. We estimate the Extended Linear
Expenditure System, using data from a 1975 Income-Expenditure Household
Survey for México. We apply clustering algorithms to form groups of
households of homogeneous demand behaviour. Also, we take into consider-
ation the fact that expenditures are non-negative and therefore use LDV

models. Additionally, we carry out a comprehensive statistical analysis

of the disturbances. To end, we discuss the patterns of household con-

sumption and saving behaviour that emerge.

In Chapter 10, we comment on the maintained hypothesis of correct
specification of the deterministic part of the model, and indicate
extensions of our work which provide a general specification test. We
also highlight the usefulness of our results in time-series studies

and present some concluding remarks.

Two statistical techniques are largely used throughout; these are
Cluster Analysis (particularly in Chapters 2, 3 and 7), and the
Lagrange Multiplier Test (particularly in Chapters 4, 5, 6 and 8).
Indeed, the thesis is concerned with the application of these techniques

in problems that arise in the econometrics of cross-sections.
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CHAPTER 4

THE ProBLEM oF Non-NorMAL DISTURBANCES®

"To say that 'errors' must obey the
normal law meane taking away the
right of the free-borm to make any
'error'he darn well pleases!"

Sir Arthur Eddington
Cambridge Lecture

4.1 INTRODUCTION

We have presented 'best' estimators of the parameters in the
linear regression model for various kinds of cross-sectional data
(e.g., census, survey and partially aggregated data). After estimationm,
we would typically want to carry out inferences about the model. For
this we have to make some assumptions - in addition to the specifiec-

ation of first and second .order moments - regarding the distribution

of the disturbances.

We denote the probability density function (p.d.f.) of the i'th
disturbance ug by f(ui), and proceed under the maintained hypothesis
that - apart from scale differentials - f(ui) is the same for all
i=1,...,N. Two additional assumptions frequently made are that
disturbances are homoscedastic and that f(ui) is the normal p.d.f..

We study the homoscedasticity assumption in Chapter 5. For now, we

* Sections 4.3, 4.4 and 4.5 contain results obtained with

Anil K. Bera and are based on the paper Jarque and Bera (1981b).
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assume its validity, and devote our attention to the normality assump-
tion. The model is given in (1.1) and, apart from the stated maintained

hypotheses, we make assumptionms [2], [5], [6] and [7] described in

Section 1.2. ) o

Under disturbance normality, i.e., under assumption [3], one may
justify the use of the OLS estimator for 8 noting that, by the Rao-
Blackwell Theorem, it is efficient (e.g., see Schmidt (1976, p.l14)).
Also, one may apply the usual t and F-tests of restrictions on B8,
and one may choose from several tests for homoscedasticity which are
derived under normality (e.g., see Goldfeld and Quandt (1965) and
Harrison and McCabe (1979)). 1In addition, one may easily obtain con-
fidence intervals for the dependent variable and arfive at particular
conclusions about the economic phenomena being studied; for example,
Lillard and Willis (1978) investigate earning mobility, and use
disturbance normality to make probability statements about the dependent
variable (an individual's earnings) given an observation on the
regressors (e.g., job history and education). The assumption also plays

an important role in Bayesian procedures (e.g., see Zellner (1971,

Chapter 3)).

The consequences of violation of the normality assumption have
been studied by various authors. In estimation, for instance, the OLS
estimator b = (X'K)_lx'y is known to be very sensitive to long-tailed
-distributions (e.g., see Hogg (1979)). Regarding inferential procedures,
Box and Watson (1962) consider the usual t and F-tests, and demonstrate
that sensitivity to non-normality is determined by the numerical values
of the regressors. They show that, to obtain the desired significance

level, some adjustment in the degrees of freedom of these tests may be
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required. Similarly, Arnold (1980) studies the asymptotic distribution
of 52 = (y-Xb)"(y-Xb)/N and shows the significance level of the usual

¥~ test of the hypothesis 02 = ui (or the confidence interval for 02}
is not asymptotically valid in the pfesence of non-normality. Also, the
significance level and power of several homoscedasticity tests (suggested
for normal disturbances) is studied in Chapter 5, and it is found that
these tests may result in incorrect conclusions un&er non-normal

disturbances. In all, violation of the normality assumption may lead to

(1) The use of sub-optimal estimators;
(ii) Invalid inferential statements; and to

(iii) Inaccurate conclusiﬁns.

These consequences highlight the importance of testing the validity of

the assumption. ? O

In Section 4.2,we present a procedure for the construction of
efficient and computationally simple econometric specification tests.
This procedure is used in Section 4.3 to obtain a test fpr the normality
of observations, and in Section 4.4 to obtain a test for the normality
of (unobserved) regression disturbances. We then present - in Section
4.5 - an extensive simulation study to compare the power of these tests
with that of other existing tests. In Section 4.6,we comment on
possible estimation methods to follow if the hypothesis of disturbance

normality has been rejected. Finally, in Section 4.7, we make some

concluding remarks.
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4.2 THE LM TEST AND AN INFERENTIAL PROCEDURE

We now present a procedure for the construction of specification

tests. This consists of the use of the Lagrange Multiplier, or Rao's

score test,on a 'General Family of Distributions'. First, some remarks

about the Lagrange Multiplier (LM) test. O

The LM test is fully described elsewhere (e.g., see Rao (1948),

Aitchison and Silvey (1960), Breusch (1978) and Engle (1981)). So here

we shall only introduce notation, and state required results. Consider

a random variable u with probability density function (p.d.f.) f(u).

For a given set of N independent observations on u, say Upsesesly,
N "

denote by 2(8) = I zi(e) the logarithm of the likelihood function,
i=1

where zi(e) = log f(ui), 6 = (ei,aé)' is the vector of parameters

(of finite dimension), and 82 is of dimension r by 1. Assume we

are interested in testing the hypothesis HO: 62 =0,

Define

dj = 32(8) /30

3

N

= T 02,(0)/30
1=1 T 3

and

- 2 '
Ijk = E[-? z(e)/aejaek]
N
= E [121 (azi(e)/aej)(azi(e)/aek) 1

for j=1,2 and k = 1,2. Let dj and Ijk denote dj and Ijk

evaluated at the restricted (obtained by imposing the restriction
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92 = 0) maximum likelihood estimator of €, say 6.

It may be shown that under general conditioms, which are satisfied

in all the applications we discuss, the statistic defined by

>

- R :
- dz(Izz I21 11112) d, 4.0

is, under Ho: 92 = 0, asymptotically distributed as a XZ with r
degrees of freedom, say X%r) (e.g., see Breusch and Pagan (1980,
P-241)). A test of Ho: 92 = 0, based on (4.1), will be referred to as

an 1M test. Two aspects of this test are worth noting.

Firstly, that it is asymptotically equivalent to the
likelihood ratio (LR) test, provided the maximum likeli-
hood estimators under the alternative hypothesis are well
defined. We shall assume that the true value of 6, e°, is
an interior point of Q, where Q is the subset of R" for
which maximum likelihood estimation is well defined and m
is the dimension of ©. This implies the IM test has the
same asymptotic power characteristics as the LR test,
including maximum local asymptotic power, i.e., asymptotie
efficiency. This is a most desirable feature since, with
large samples, any reasonable test can be expected to have
high power for alternatives far away from 82 = 0, and it is
only for alternatives where 82 is near the zero vector that

1
asymptotic power has relevance.

! The IM test is also known to have optimal small sample power

properties in some cases, €.g., see King and Hillier (1980).
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A second aspect of this test is that - to compute ié - we
only require estimation under the null hypothesis of the
parameters in the model. In all the inferential problems
studied here estimation under Ho: 62 =0 1is easily
carried out. This makes the IM test computationally
attractive, as compared to other asymptotically equivalent

2
tests (i.e., the LR test and the Wald test).

For these two reasons - good power properties and computational ease -

we use the LM test, rather than others, in our inferential procedure,

O

The LM test has been recently applied in many econometric

inferential problems (e.g., see Byron (1970), Godfrey (1978a,b,c) and

Breusch and Pagan (1979,1980)). Our procedure for the construction

of specification tests also uses the LM principle, but has its

distinet feature in the formulation of £(6). Rather than assuming a

'particular' p.d.f. for uy (or transformation of ui), we assume

that the true p.d.f. for uy belongs to a 'General Family' (e.g., the

Pearson Family), of which the distribution under HO is a particular
member. We then use the LM principle to test HD within this

'General Family of Distributions'. [Of course, it may be argued that

any application of the LM test (e.g., testing for homoscedasticity)

specifies a 'General Family'. Here we use this term to refer to

Families of p.d.f.'s in the 'statistical' sense (e.g., see Kendall and

2 Cases exist when IM, LR and Wald tests have identical power for

all sample sizes; and choice of test in these cases is based
exclusively on computational ease. This occurs when testing linear
restrictions in the single equation model (see Evans and Savin
(1980)), and in some simultaneous equations situations, e.g., when

testing homogeneity restrictions in demand systems (see Bera,
Byron and Jarque (1981)).
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Stuart (1969, Chapter 6)). Our later discussion will help make this
point clearer]. We also note the tests obtained are known to have
optimal large sample power properties for members of the 'General
Family' specified, and that this does not imply they will not have good
power properties for non-member distributions. Indeed, for the cases
studied, we found that the tests performed with extremely good power

for distributions not belonging to the 'General Family' used in our

derivations.

The suggested approach for the development of specification tests
can be applied in a wide range of statistical and econometric inferential
problems.3 In this thesis we confine ourselves to those applications
of the procedure that are of direct interest to the econometrics of

erogg-sections. The first two applications are presented in the next

two sections, where we obtain tests for normality of observations and

regression disturbances.

4.3 A TEST FOR NORMALITY OF OBSERVATIONS

Statisticians' interest in fitting curves to data goes a long way

back. As noted by Oxd (1972, p.l) - although towarde the end of the

nineteenth century - "not all were convinced of the need for curves
other than the normal" (see K. Pearson (1905)), "by the turn of the
century most informed opinion had accepted that populations might be
non-normal" (some historical accounts may be found in E.S. Pearson

(1965)). This naturally led to the development of tests for the

¥ For example, as pointed out in Jarque and Bera (1981c), this can

be used to test if observations come from a particular truncated
distribution, providing an alternative to the Kolmogorov-Smirnov
test with fized truncation point. Another example is given in
Lee (1981), who has used our approach to test distributional
assumptions in accelerated failure time models.
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normality of observations, Interest in this area is still very much
alive, and recent contributions to the literature are the skewness,
kurtosis and omnibus tests proposed by D'Agostino and Pearson (1973),
Bowman and Shenton (1975) and Pearson, D'Agostino and Bowman (1977).
Other approaches include: the Analysis of Variance tests of Shapiro
and Wilk (1965), and Shapiro and Francia (1972); LR tests based on
specific alternatives such as power transformations; goodness of fit
tests such as the Xz-test and the Kolmogorov-Smirnov test; and
graphical methods like normal probability plots. In this section
we consider the Pearson Family of distributions, and make use of the LM
principle to derive an additional test for the normality of observa-

tions. This test is simple to compute and asymptotically efficient.

Before proceeding to our derivations, we note that testing the
normality of observations has constituted an important and central
statistical problem in the Natural Sciences. Furthermore, this is also
a relevant problem in the Social Sciences, e.g., Carlson (1975) con-
siders testing the normality of price expectations of a group of
economists. Therefore, the results of this section have potential

~application in many fields of research. a

We now present our derivations. Consider having a set of N
independent observations on a random variable v, say ViseresVys and
assume we are interested in testing the normality of v. Denote the
unknown population mean of vy by u = E(ui] and, for convenience,

write Yy ™ u-+ui. It follows that E[ui] = 0 and that - apart from

location - the p.d.f. of vy is equal to the p.d.f. of uy . Assume

the p.d.f. of U, f(ui), has a single mode and "smooth contact with
the u;-axis at the extremities". More specifically, assume f(ui) is

a member of the Pearson Family. This is not very restrictive, due to
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the wide range of distributions that are encompassed in it (e.g.,
particular members are the Normal, Beta, Gamma, Students' t and F

distributions). This means we can write (see Kendall and Stuart (1969,

p.148))

df(ui)/du:.L = (cl—ui)f(ui)/(co-clui+c2u§)

or

c.~u,
13
exp I A dui
ca—clui+c2ui -
c.-u
exp J _____l__!;__i du_ dui
—oo co-clui+c2ui

with - < uy < », and where the denominator in equation (4.2) makes

f(ui) a proper p.d.f. .

It follows that the logarithm of the likelihood function (or log-

likelihood) of our N observations Vysese5Vy may be written as

. Wy
L(u,c ,cl,cz) = -N log J exp [ > dui dui
e —eo J e —clui+c2ui
N c.-u
+ 3 J L | . (4.3)
i=1 cm-clui+|:2|.1:L

Although our procedure is more gemeral, our interest here is to test

the hypothesis of normality, which means, from our expression for f(ui),
. - - - ] - '

that we want to test H : ey =c¢y = 0. Let Bl (u,co) 4 62 (cl,cz)

and 6 = (ei,eé)'. Using these, and the definitions of Section 4.2, we

can show that - for this problem - the LM test statistic is given by

(see Proposition 1 in Appendix A in page 274)
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= N 26+ B3y 2/241

(4.4)
N " N
- 3z, . 2, . Woc S U= .
where '/hl “3""2 ,b2 u4lu2. "j 121 (\a:l v)“/N and v 121"1/“

(Note \/bl and hz are, respectively, the skewness of kurtosis sample

coefficients). From the results stated in Section 4.2 we konow that,

under ﬂo: Ly = Cpy = 0, LM is asymptotically distributed as x%z),
and that a test based on (4.4) is asymptotically locally most powerful.
Ho is rejected, for large samples, if the computed value of (4.4) is

greater than the appropriate significance point of & xz

(2)° -

Several tests for normality of observations are available. For

example, there are tests based on either of the quantities vb

y 0%
b

2° These have optimal properties, for large samples, if the departure

from normality is due to either skewneas or kurtosis (see Geary (1947)).

We have shown expression (4.4) is
an IM test statistic. Thexefore, we have uncovered a pr:l.néipla that
proves its asymptotic efficiensy. This finding encourages the study
of its finite sample properties. For finite N, the distributions of
v’bl and b,, under H_, are st{ll wnknown. The problem has engaged
statisticiane for & number of yeavrs, and only approximations o the true

distributions are availaeble (e.g., for Jb‘1 see D'Agostino and Tietjen
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(1973); and for b, see D'Agostino and Pearson (1973)). This high-

lights, together with the fact that #bl and b

(e.g., see Pearson, D'Agostino and Bowman (1977, p.233)), the difficulty

, are not independent

of analytically obtaining the finite sample distribution of (4.4)

under H .
o]

An alternative is to resort to computer simulation. We see that
IM is invariant to the scale parameter, i.e., that the value of IM
is the same if computed with vi/U rather than vy (for all finite
¢ > 0). Therefore, we may assume V[vi] = 1, and generate n sets of
N pseudo-random variates from a N(0,1). Then, for each of these n
sets, LM would be computed, giving n values of LM under Ho' By
choosing n large enough, we may obtain as good an approximation as
desired to the distribution of LM and, so, determine the ecritical
point of the test for a given significance level a, or the probability
of a Type I error for the computed value of IM from a particular set
of observations. Computer simulation is used in Subsection 4.5.1.
There, we present a study comparing the finite sample power of LM

with that of other existing tests for normality; and a Table of

significance points for @ = .10 and .05. O

To finalize this section, we note the procedure utilized here may
be applied in a similar way to other families of distributions. We
have used the Gram-Charlier (type 4) Family (e.g., see Kendall and
Stuart (1969, p.156) or Cramer (1946, p.229)), and derived the LM
normality test, obtaining the same expression as for the Pearson Family,
i.e., equation (4.4). Our approach may also be used to test the
hypothesis that £(u) is any particular member of, say, the Pegrson
Family. This may be done by forming Ho with the appropriate values

of ey ¢ and €y that define the desired distribution, e.g., to test
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if f(u) is a Gamma distribution we would test H_: ¢y =0 (see

Kendall and Stuart (1969, p.152)). In some cases this may involve

testing non-linear inequalities in Cos C and c,- For example, to

test if £(u) dis a Pearson Type IV we would test HD: ci-écocz < 0.

This requires the development of the Lagrange multiplier procedure to

test non-linear inequalities, and should be an important area for

further research.

4.4 A TEST FOR NORMALITY OF DISTURBANCES

Now we consider the regression model given by equation (1.1). We
note that - by our maintained hypotheses - the regression disturbances

Upseee,ty  are assumed to be independent and identically distributed

with population mean equal zero. In addition, we now assume the p.d.f.
of wu;, f(u;), is a member of the Pearson Family (the same result is
obtained if we use the Gram-Charlier (type A) Family). This means we

can write f(ui) as in (4.2) and the log-likelihood of our N observa-

tions yl,...,yN as in (4.3), where now the parameters, i.e. the

arguments in &(+), are B, cs €1 and Cys and - yi-xiB.

We define 81 = (B‘,co)‘ and 92 = (cl,cz)‘, and note that we want
to test the normality of the disturbances, This is equivalent to testing
H:e, = 0. It is shown in Proposition 2 in Appendix A (see page 275),

that - in this case - the LM test statistic becomes
~2 ~3 A a2 2
M, = N[u3/(6u2) % ((u,‘/uz)-3) /24]
+N[302/(20,) = Rafiq /2] (4.5)
Hyl'Nakad  Hallydtiad o :

N

where ﬁj = I Gi/n, and the u, are the OLS residuals, i.e.,
i=1
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ﬁi = yi—xib. We have written the resulting test statistic with a suffix
N to indicate this refers to a digturbance normality test. Using the
results of Section 4.2, we know LMN is, under Ho’ asymptotically
distributed as X%Z)’ and that it is asymptotically efficient. Obtaining
the finite sample distribution of LMN by analytical procedures appears
to be intractable. For a given matrix X, we may resort to computer
simulation, generating vy from a N(0,1) (e.g., see Section 4.3 and

note LMN is invariant to the scale parameter 02). In Subsection 4.5.2

we use computer simulation to study the finite sample power of LMN.

To finalize, we recall that - in linear models with a constant
term - OLS residuals satisfy the condition Gli-...+-au = 0. In these

cases we have ﬁl = 0 and, therefore, (4.5) would reduce to

. 0 - g
L, = N[(Jbl) 16+(b2—3) 28] ., (4.6)

& a0.e8 -y
where bl x p3/u2 and b2 = "4’“2‘

4.5 POWER OF NORMALITY TESTS

In this section we present results of a Monte Carlo study. This
was done to compare the power of various tests for normality of observ-

ations and regression disturbances.

Not all cross-sectional studies have large samples. There are
situations where the sample may be small due to splitting of the
original data set (e.g., see Chapter 7), or because of a small cross-
section to start with (e.g., observations on a group of countries).
Keeping this in mind, we carried out simulations for small and moderate

sample sizes. More specifically, we used N = 20, 35, 50, 100, 200
and 300.
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We consider four distributions members of the Pearson Family:
the Normal, Gamma (2,1), Beta (3,2) and Students t with 5 degrees
of freedom; and one distribution which is a non-member of the Pearson
Family: the Lognormal. These distributions were chosen because they
cover a wide range of values of third and fourth standardized moments
(see Shapiro, Wilk and Chen (1968, p.1346)). To generate pseudo-random
variates us, from these and other distributions considered throughout
the study, we used the subroutines described in Naylor et al. (1966)
on a UNIVAC 1100/42. Each of the five variates mentioned above was

standardized so as to have zero mean.

4.5.1 Testing for Normality of Observations

We first note that since y = 0, we have vy = uy (see Section

4.3 for notation). The fests we consider for the normality of the

observations u; are the following:

1. Skewness measure test [with this we would reject
normality, i.e. HD, if /bl is outside the interval

(/byp+by). For the definition of bipseee ete.
see below];

2. Kurtosis measure test [reject Ho 51 bz is outside
(boy,sPoyy) 1

3. D'Agostino (1971) D* test [reject H if
D* = [Z(i/Nz—(N+l)/(2N2))e(i’/uL;‘—(Z/n)_l]N;i/ .02998598 is
outside (D;,Dg), where eg is the i'th order statistic
of ul""’uN];

4. Pearson, D'Agostino and Bowman (1977) R test [reject

Ho if either vEl is outside (RlL’Rlu) or b2 is

outeide (RZL,RZU)];
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5. Shapiro and Wilk (1965) W test [reject H o if
0,2
W= (EaiNei) /(sz) is less than W, where the
a;y are coefficients tabulated in Pearson and

Hartley (1972, p.218)];

6. Shapiro and Francia (1972) W' test [reject H
: T ID2 '
1f W (EaiNei) /(Nuz) is less than W/, where
the aiN are coefficients that may be computed

using the tables in Harter (1961)]; and

€

7. 1M test [reject Ho if 1LM > LMU].

We did not include distance tests (such as the Kolmogorov-Smirnov
test, Cramer-Von Mises test, weighted Cramer-Von Mises test and the
Durbin test) because it has previously been reported that, for a wide
range of alternmative distributions, the W test - considered here -

was superior to these (see Shapiro, Wilk and Chen (1968)). O

The values JblL’ b

1w Pare Paur D D Ryps Ryps Ryps Rops W
W£ and LM, are appropriate significance points. We considered a

10 per cent significance level, i.e., we set o = ,10. All the points
we used are summarized in Table 4.1. For N = 20, 35, 50 and 100

and tests fbl, b2’ p* and R, the points are as given in White and
MacDonald (1980, p.20). For N-= 200 and 300, significance points
for Jbl, b2 and D* were obtained respectively from Pearson and
Hartley (1962, p.183), Pearson and Hartley (1962, P.184) and D'Agostino
(1971, p.343); and for the R test we extrapolated the points for

N < 100. For W, W' and LM we computed the significance points by
simulation using 250 replications so that the empirical o, say

®, was equal to .10. For example, for a given N, we set W. = W(25),
L

where W(25) was the 25'th largest of the values of W in tha 250
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TABLE 4.1

Significance points for normality tests (o = .10)

20

35

50 100 200 300
/blL -.769 -.621 -.534 -.389 -.280 -.230
/blu .769 .621 .534 .389 .280 .230
by 1.82 2.03 2.15 I g.51 2.59
byy 4,17 4.10 3.99 37 3.57 3.47
n{ -2.440 -2,295 -2,210 =-2.070 ~1.960 -1.906
DG .565 .805 .937 1.140 1.290 1,357
Ry -.891 -.722 -.624 -.457 -.332 -.285
Big .891 <722 .624 457 355 .285
Ryp. 1.762 1.973 2.078 2.302 2.450 2.500
Roy 4.530 4,415 4,230 3.955 3.650 3.500
Wy .925 .945 .957

W .933 .946 .967 .980 .989 .991
LMU 2.18 2.56 2.63 3.36 3.71 4.29
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replications under Normal observations. Similarly for W'. For LM
we set LMU = LM(225). [Initially we used, for W, the points from
Shapiro and Wilk (1965, p.605); for W' from Weisberg (1974, p.645)

and Shapiro and Francia (1972, p.216); and for IM from the values

of Table 4.3. With a = .10, easier power comparisons among the one-

sided tests W, W' and IM can be made. Note that fbl, b and D¥

2
are two-sided tests and that R is a four-sided test, and hence, for

these it is troublesome to adjust the significance points so that

a = .10.] O

Every experiment in this simulation study consists of generating
N pseudo random variates from a given distribution; computing the
values of fbl, by, D*, W, W' and IM and seeing whether H is
rejected by each individual test. We carried out 250 replications.
The estimated power of each test (obtained by dividing the number of
times Ho was rejected by 250) for each of the 5 distributions and
6 sample sizes considered are given in Table 4.2, except for W which
cannot be computed for N > 50 because of the unavailability of the
coefficients aine The power for the Lognormal and N = 50, 100, 200
and 300 is not reported; this was equal to 1 for all tests. In the
Table, the highest power is underlined for each distribution and

sample size, except when three or more tests have this power.

If we have large samples, and we are considering members of the
Pearson Family, the theoretical results of Section 4.3 justify the use

of the LM test. For finite sample performance we resort to Table 4.2.

For N = 20, the preferred test would probably be the W test, followed

by LM and W'. For N = 35, teste W and LM may be considered best,

and we find these are followed by W'. For N = 50, perhaps LM would

be preferred, followed by the W and W' tests. LM has highest power
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TABLE 4.2

Normality of Observations

Estimated power with 250 replications (a=.10)

* '
/bl b, D R W W LM
N =20
Normal .068 .080 .060 .084 .100 .100 .100
Beta .072 .128 124 .120 .208 .132 .116
Students t 8 v o212 . 240 252 .280 .300 . 340
Gamma .796 476 .604 12 .920 . 884 .872
Lognormal .996 .916 .988 .996 .996 .996 .996
N= 35
Normal .100 .108 .132 .128 .100 .100 .100
Beta .108 .208 164 .200 276 .120 .116
Students t «332 .396 . 384 372 .316 428 Lh4
Gamma .968 .600 . 804 .940 .992 .980 .992
Lognormal 1.000 .980 1.000 1.000 1.000 1.000 1.000
N = 50
Normal .064 .072 .080 .064 .100 .100 .100
Beta .192 .232 204 .292 480 .360 412
Students t vl L 404 404 420 .332 496 .508
Gamma 1.000 .768 .920 1.000 1.000 1.000 1.000
N = 100
Normal .084 .100 .104 .084 .100 .100
Beta .276 .488 .372 .568 .652 684
Students t 484 .680 .680 .672 .736 . 744
Gamma 1.000 948 .988 1.000 1.000 1.000
N = 200
Normal .092 144 .156 .100 .100 .100
Beta .540 .836 .628 .916 .944 .964
Students t .520 . 844 .848 . 844 .848 .856
Gamma 1.000 .996 1.000 1.000 1.000 1.000
N = 300
Normal 124 .132 132 .100 .100 .100
Beta .776 .940 .804 972 .996 1.000
Students t .560 .984 .988 .980 . 964 .992
Gamma 1.000 1.000 1.000 1.000 1.000 1.000
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for all distributions and N = 100, 200 and 300, but the differences

in power compared with the W' test are small. We should also note
that LM may have good relative power even when the distribution is
not a member of the Pearson Family (e.g., see power for Lognormal in
Table 4.2). Overall, LM <is preferred, followed by W and W', which
in turn dominate the other four tests. [This uniformly good relative
performance of W and W', is in contrast with the findings of White
and MacDonald (1980, p.22). The differences in the results may be due
to our use of a one-sided rejection region and their use, apparently,
as pointed out by Weisberg (1980, p.30), of a two-sided rejection

region for the one-sided tests W and W'].

Apart from power considerations, LM has an advantage over W
(and W') in that, for its computation, one requires neither ordered
observations (which may be expensive to obtain for large N) nor
expectations and variances and govariances of standard normal order
statistics (which may not be available for a particular N, e.g., as

noted previously W cannot be computed for N > 50 because of the

N
unavailability of aiN)'

These results - together with its asymptotic properties -
suggest the LM test may be the preferred test in many
situgtions. Therefore, it appeared worthwhile to carry

out extensive simulations to obtain - under normality -
finite sample significance points for LM. Using expres-
sion (4.4) we carried out 10 000 replications and present,

in Table 4.3, significance points for a = .10 and .05

% IM has an additional advantage in providing a convenient frame-
work in which simultaneous specification tests may be derived
(e.g., see Chapters 5, 6 and 10).
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for a range of sample sizes. The Table suggests that,
for large samples, a test of approximately the desired
level may be carried out using the asymptotic distribution

of LM, i.e. a X%Z)’ in the choice of the significance point.

TABLE 4.3

Normality of Observations
Significance points for LM normality test

(10000 replications)

N a = .10 a = .05
20 2.13 3.26
30 2.49 e [
40 2.70 3.99
50 2.90 4,26
75 3.09 4,27
100 3.14 4.29
125 3.30 4,34
150 3.43 4,39
200 3.48 4.43
250 3.54 4.5%
300 3.68 4,60
400 3.76 4.74
500 3.91 4,82
800 4,32 5.46
© 4.61 5.99

4,5.2 Testing for Normality of Regression Disturbances

In the present subsection, we study the power of tests for
normality of (unobserved) regression disturbances. The tests we con-
sider are the same as those described in Subsection 4.5.1, but we
computed them with estimated regression residuals rather than the true
disturbances u;. We denote these by /ﬁl, 32, ﬁ*, R, W, ¥ and LHN.

The first six are the modified large-sample tests discussed in White

and MacDonald (1980). The seventh test is the LM test suggested in
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Section 4.4. The modified Shapiro-Wilk test, W, has been reported to

be superior to modified distance tests, so these were excluded (see

Huang and Bolch (1974, p.334)). (]

We consider a linear model with a constant term and three additio-
nal regreésors, i.e. with K = 4, and utilize the OLS residuals Gi
to compute the modified tests. (Huang and Bolch (1974) and Ramsey
(1974, p.36) have found that the power of modified normality tests,
computed using OLS residuals, is higher than when using Theil's
(1971, p.202) BLUS residuals.) To obtain ;i we use the same ui's

as those generated in Subsection 4.5.1. For comparison purposes, our
regressors Kl""’xK are defined as in White and MacDonald (1980,
p.20), i.e., we set xil =1(i=1,...,N) and generate KZ, X3 and
X4 from a Uniform distribution. [The specific values of the means
and variances of these regressors have no effect on the simulation
results. This invariance property follows from the fact that, for a

linear model with regressor matrix X = (xl,...,xN)‘, the OLS

residuals are the same as those of a linear model with regressor matrix
XR, where R is any K by K non-singular matrix of constants (see

Weisberg (1980, p.29))]. For N = 20 we use the first 20 of the 300
(generated) observationms X, - Similarly for N = 35, 50, 100 and 200.

O

For this part of the study we utilize the same significance points

as those of Subsection 4.5.1, except for ﬁ, W' and LMN, for which we

use the points corresponding to & = .10 (e.g., as significance point

of W we use W(25), where W(25) is the 25'th largest of the values
of W 1in the 250 replications under Normal disturbances). The

estimated power of each test is given in Table 4.4
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TABLE 4.4
Normality of Disturbances
Estimated power with 250 replications (a = .10)

(R=4) (Regressors: xl =1; XZ,X3,X4 v uniform) (N varies)

Vi * o 71
bl b2 D R W W LMN

N =20

Normal .084 .100 140 .100 .100 .100 .100

Beta .068 .108 .096 .100 124 .072 .084

Students t 224 .192 .188 <204 .168 .192 «256

Gamma .640 .356 416 572 644 .600 644

Lognormal .920 844 .904 .912 .924 .932 944
= 35

Normal .108 .092 .120 .120 .100 .100 .100

Beta .128 .164 124 .184 .216 .128 .116

Students t .292 .340 .332 . 324 .236 . 340 .360

Gamma . 804 <544 .708 .856 .872 .872 .892

Lognormal 1.000 .968 .988 1.000 .996 1.000 1.000
= 50

Normal .092 .084 .088 .084 .100 .100 .100

Beta .160 .180 .148 «212 344 172 .188

Students t .360 .388 400 412 .300 456 464

Gamma’ .984 724 .856 .976 .988 .988 .988
= 100

Normal .100 .096 .108 .108 .100 .100

Beta <244 .416 .296 .512 -496 .536

Students t 444 648 .664  .628 .676 724

Gamma 1.000 .940 .988 1.000 1.000 1.000
= 200

Normal .088 .128 .132 112 .100 .100

Beta .520 .788 592 .872 924 928

Students t .532  .824  ,820  .808 .820  .B28

Gamma 1.000 .996 1.000 1.000 1.000 1.000
= 300

Normal .108  .116  .124 - .088 .100  .100

Beta . 740 .932 .780 .964 .992 .992

Students t .540 .984 -984 .980 972 .988

Gamma 1.000 1,000 1.000 1.000 1.000 1.000
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For N = 20 we find that probably the best tests are LMN and

For N =35 and 50 we obtain that LM

LY A' A
W, followed by W' and Jbl. W

and W are the best, and that these are followed by W'. For

N = 100, 200 and 300, LMN has highest power for all distributions
and we see that the W' test performs quite well also. Our results
agree ﬁith those of White and MacDonald (1980) in that - in almost all
the cases - the modified tests give, correspondingly, lower powers than
those using the original disturbances; these power differences diminish
as N increases (compare Tables 4.2 and 4.4). We also find that, for
a given N and a given distribution, the ranking of the tests in

Table 4.2 is approximately the same as that of Table 4.4, To obtain

a measure of closeness between the true and modified statisties we
computed their correlation. The numerical results are given in Table
4.5. Our findings agree with those of White and MacDonald (1980, p.22):
Vﬁl appears to be closer to /bl; and Sz appears to be closer to bz,
than the other modified statistics. In our study, these would be
followed by (D¥, ﬁ*) and then by (LM, IM ). We would then have

N
(W', W') and, lastly, (W, ﬁ). O

A further comment is required. Tt is elear that the OLS residuals

G = (I—Qx)u are a linear transformation (defined by QX) of the unob-

served disturbances u, where G = (Gl,...,GN)', u = (ul,...,uN)‘ and

Q isan N by N matrix defined by Qx = X(X'X)-IX'. As noted by
White and MacDonald (1980) and Weisberg (1980), simulation results
studying the relative power of tests for the normality of u - computed

using - depend on the particular form of QX‘ If ome is to carry

out a Monte Carlo study then, to have a less restrictive result, one

should consider various forms of QX' Different forms may arise due to

changes in N; due to variations in the way the regressors Xl,...,XK
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TABLE 4.5

Xl = 13 xz,x X

v uniform) (N varies)

3
" = . % A A
N =20
Normal .154 .718 .669 .532 .594 <726
Beta 679 .580 .556 .283 .326 321
Students t .874 .829 . 794 . 740 .778 .821
Gamma .803 .862 .796 .674 .724 .787
Lognormal .816 . 894 . 764 .688 .728 .816
N = 35
Normal 893 .821 .833 .704 .768 .786
Beta .839 .819 . 804 .630 .664 s B2
Students t .950 944 .925 .904 .921 4953
Gamma .925 .959 .916 .845 .877 .946
Lognormal .957 .974 .870 .834 . 859 .961
N =50
Normal .902 .837 . 844 747 . 790 .881
Beta .898 .829 .842 .726 .782 790
Students t .969 974 .958 .952 .961 994
Gamma 942 .968 .932 .862 .892 .969
Lognormal .980 .987 .922 .892 .910 .982
N = 100
Normal .956 .929 .932 .844 .907
Beta 944 .924 .927 . 841 864
Students t .989 .989 ..979 .984 .983
Gamma . 980 .990 .962 .936 .991
Lognormal .995 .997 .954 951 .995
N = 200
Normal .976 .972 .972 .926 | .935
Beta .968 .954 . .955 .933 949
Students t .996 997 .992 .995 897
Gamma 991 .996 .981 .961 .998
Lognormal .998 999 971 .973 .999
N-= 300
Normal .980 .973 975 926 .941
Beta .968 .957 .964 .954 .958
Students t .997 .998 .995 .996 .999
Gamma .994 .997 .987 .966 998
Lognormal .999 .999 .978 .980 999
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are generated; and/or due to changes in the number of regressors K.

So far we have studied the power of the tests for different values
of N, using K = 4 and generating the regressors as in White and
MacDonald (1980). This was done to compare our results with theirs.
In addition, we have repeated our experiments but generating the
regressors in a different way. We set X,=1 (1=1,...,N) and
generated X2 from a Normal, X3 from a Uniform and X4 from a xz "

10
These regressor-distributions are of interest because they are commonly
found in cross-sectional studies (we shall aiso use this regressor set
in future parts of the thesis). The numerical results are presented in
Tables 4.6 and 4.7 (Tables 4.6 to 4.13 are in Appendix B, page 280).
Our findings do not vary substantially from those stated for the White
and MacDonald regressor set. LMN is a preferred test (together with W
and W') for N 250 and is preferable to all tests for N > 100 (see

Table 4.6). The conclusions from the analysis of the correlations

between the true and modified statistics are also the same (see Table 4.7).

O

As a final emercise,-we carried out our experiment fixing N = 20
and using the three regressor Data Sets reported in Weisberg (1980,
P.29). Following Weisberg, we varied K, for each Data Set, using
K=4,6,8 and 10. The numerical results are summarized in Tables
4.8-4.13. Weisberg found that the pawer of the W test may vary as
K and/or the regressors are changed. We find this to be the case for
all the tests considered. For example, for Data Set 1 (see Table 4.8),
we obtain that for the Lognormal the power of /ﬁl, say P(/ﬂl), is
equal to .636, for K = 10, and .956 for K = 4, 1.e.,

.636 < P(/b;) < .956. Similarly we cbtain that .572 < P(b,) < .812;
.608

| A

P(D*) < .888: .632 < P(R) < .940; .502 < P() < .928;



—82-

636 < P(U') < .944 and .616 < P(LM,) < .952. We also find that for
Data Sets 1 and 2 (see Tables 4.8 and 4.9), the empirical significance
level & is close to .10 for all statistics and all K. For Data

Set 3, however, ; increased considerably as K increased (e.g., see
Table 4.10 and note that for Vb, o = .088, .104, .200 and .216 for
K=4, 6,8 and 10 respectively). This shows £hat the power and the
level of a test may depend on the specific form of QX' Nevertheless,
when comparing the relative power, it is intereéting to note that, for
all K. and all three regressor Data Sets, LMN’ ﬁ, W' and ng are

the preferred tests (as it was found in our earlier 2 sets of experiments
with N = 20). Regarding the correlations between the true and modified
statistics, we observe that (for each Data Set) as K increases, all
correlations decrease (e.g., see Table 4.11 and note'that for Data Set 1,
the correlation between D* and ﬁ*, for the Normal was equal to .640
when K =4 and to .329 when K = 10). However, the ranking among

the tests remains the same, i.e., from high to low correlations the

order remains being (Jbl,fﬂl), (bz,gz), (D*,B*), (LM,LMN), (W‘,ﬁ')

and (W,W) (see Tables 4.11, 4.12 and 4.13). 0

Our main result of Subsection 4.5.2 is that, for all the
forms of matrices Q; that we have studied, 1My, performed
with good relative power. This was true for both small N
(e.g.y N = 20) and large N (e.g., N = 300). The above
findings encourage the use of LﬁN in testing for the
normality of uy . The statistic LMN is simple to compute
and, in any regression problem, we may easily obtain an
approximation to its finite sample distribution, under HO,
by computer simulation. This should not represent a serious

problem, particularly with the fast speed and increased

availability of modern computers.
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4.6 ANALYSIS OF MODELS WITH NON-NORMAL DISTURBANCES

In Section 4.4 we suggested an asymptotically efficient test for
the normality of disturbances, and in Section 4.5 we noted its good
power - relative to other existing tests - even for very small sample
sizes. If the hypothesis that disturbances are normally distributed
(HO) is accepted, classical ecomometric analysis may be carried out.5

In this section, we make a very brief comment on possible procedures

to follow if H0 is rejected.

Some econometricians consider that disturbances represent the sum
of effects of omitted variables, and justify the normality assumption
by making an appeal to a centr;l limit theorem (e.g., see Johnston
(1972, p.11)). Others regard normality as an assumﬁtion made for com-
putational convenience, arguing it gives a quasi-likelihood function.
Whatever the motivations underlying the assumption, typically, if Ho
is rejected, no alternative disturbance distribution would exist in an
econometricians' mind.5 Under these circumstances one may consider -

as an alternative to Least Squares estimation - the use of

(1) Robust estimation on the lihear model,
(2) Estimation within a Family of transformations, or

(3) Estimation within a Family of distributions.

We shall - very briefly - describe these.

5 In particular, we could regard OLS estimators as MLE. It is

difficult to determine the properties of estimators after a dis-
turbance specification test has been carried out. Apparently this
problem has not been dealt with in the econometric and statistical
literature. As it is common practice (e.g., see Malinvaud (1980,
footnote in pg.292)) we do not pursue this point, and proceed with
our presentation disregarding the effect of the pretest,

If one had a speecific aiternative p.d.£. for u;, one could write

down the log-likelihood, obtain MLE's of B, and use the general

theory of MLE to obtain approximate significance tests. (See
Subsection 4.6.3).
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4.6.1 Robust Estimation

Consider a situation where, after rejection of H0 » We
decided to proceed analysing the linear model, but regarding the dis-
turbances as non—nbrmal. If uy is non-normal, but its variance is
finite, the OLS estimator b would still be BLUE. Furthermore,
under fairly general conditions, we could apply - for large samples -
the usual t and F tests (e.g., see Arnold (1980)). Then it would
appear that - particularly for large samples - there is strong reason
for the use of OLS estimates even when disturbance normality is
rejected. Yet, some statisticians question the 'appropriateness’' of
the OLS estimator by arguing the class of linear estimators is too
restrictive, and the unbiasedness property as being of doubtful value
(e.g., see Hampel (1973, p-90)). Others question the use of the OLS
estimator because of the finding that it may be quite sensitive to
outliers and long-tailed distributions (e.g., see Hogg (1979)). These

considerations - among others - have contributed to the development of

alternative estimation methods.

An important class of these alternative methods goes under the

rubric of robust regression., As stated by Hill and Holland (1977,

p.828),

"the emphasis in robust regression is on methods
which are not sensitive to deviations from normal
distributions and to the effects of outliers in

the data".
Work in this area is extensive and the literature is voluminous. This
is evident from the five-part article of H. Leon Harter entitled
'The method of Least Squares and some alternatives', which includes some
historical accounts and a survey of recent developments (see Harter

(1974,1975)). A good, brief illustration of some of these techniques
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is found in the textbooks of Maddala (1977, p.308) and Malinvaud
(1980, p.318).

4.6.2 Estimation within a Family of Transformation

Analysis of linear models with non-normal disturbances is

complicated. This has led people to consider the use of transformations

applied to the measured variables y, so that - in particular -
i P

disturbance normality is better suited.7 More formally, if u; denotes

the i'th disturbance from a transformed model; then we would want the

transformation to be such that u: is normally distributed and, at the

same time, to have (as was assumed for ui) E[u$|xi] = 0, and

E[ul?] = ui for all i =1,...,N.

Several transformations exist that aim to achieve this, and a

popular one is the Box and Cox (1964) transformation. This defines

ygk} = (yi—l)!k for A % 0; and yik) = log y, for A + 0, where A

is an unknown parameter. If the Box-Cox transformation is applied, the

transformed model would be

y()\) = X% +u° :

) ) (l))

where vy = (yl sy

is the vector of the N transformed

: o
observations; B° is a K by 1 wvector of unknown parameters associated

with y(A), and u® is a vector that contains the N disturbances u°

i

7 Data transformation is considered here as a statistical device to

achieve disturbance normality, so one may consider applying trans-
formations to the dependent variable only. Transformations may also
be applied to the variables x, (e.g., see Box and Tidwell (1962)),

and are a tool used in the choice of regression functional form
(e.g., see Zarembka (1968,1974)). In addition, transformations
provide a convenient framework for the derivation of specification

tests (see Savin and White (1978), Godfrey and Wickens (1981b), and
Bera and Jarque (1981b)),
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A fundamental assumption of the Box—Cox'transformation is that,

for some A, the disturbances u({,...,uo 'ean be treated as' N

N
normally distributed variables with mean zero and finite variance Gg.a
This allows writing the log-likelihood, from which MLE's for A, g°
and ag, and corresponding standard errors can be obtained. Before
concluding we note that - in econometrics - our usual interest is to

explain Y (the 'measured variable'), and not some function of Y.

In this case, as stated by Box and Cox (1964, p.214)

"we either analyse linearly the untransformed
data or, if we do apply a transformation in
order to make a more efficient and valid

analysis, we convert the conclusions back to
the original scale".

In particular, interest could reside in computing elasticities, and for

this we may proceed as in Savin and White (1978, p.3).

4.6.3 Estimation within a Family of Distributions

A final alternative to OLS estimation, that we shall briefly
comment on, is MLE under a particular family of distributions. For

example, an attempt may be made to obtain the MLE's of B, Cos ©4

and ¢, for the Pearson Family - unfortunately this is difficult.

Indeed, no results are presently available (even for the non-regression
case), and this is an area that_requires further study (Pearson distribu-

tions are usually fitted by the method of moments, e.g., see Kendall and

Stuart (1969, p.152)). However, other computationally more manageable

8  The Box-Cox transformation is well defined for positive values.

This implies limits on yil), which means - strictly speaking -
that ug cannot be normal (see Poirier (1978)). 1In the various

applications of the transformation, this 'truncation problem' has

been typically neglected. This approach is not entirely incorrect
when truncation is not severe.
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families may be considered. For instance, Goldfeld and Quandt (1980)
derive maximum likelihood estimates under the Sargan Family of distribu-
tions (see also Zeckhauser and Thompson (1970) and Anscombe (1967)) .

An advantage of this approach (as the one described in Subsection 4.6.2)

is that the general theory of MLE could be used to obtain approximate

significance tests.

4.7 CONCLUDING REMARKS

Throughout this Chapter we have discussed normality under the
assumption that the variance of the disturbances was constant. In
Chapter 5 we study the problem of heteroscedasticity, firstly, under
normal disturbances, and then we consider both probiems jointly. 1In
particular, we extend the procedure of Section 4.4 to derive a joint

test for disturbance normality and homoscedasticity.

We end by noting there are cases in applied econometrics where we

would not carry out a disturbance normality test because, by the nature

of the model, normality would not hold. This is the case, for example,

when estimating a frontier production function (e.g., see Maddala

(1977, p.317)). Another example arises when vy is restricted, say,
to non-negative valueg, i.e., ¥ = x£84-ui > 0. Then the range of u.
would be restricted to uy 3_—xi8 and, therefore, disturbance normality

could not hold. These types of limited dependent variable models are

studied in Chapter 6.
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ApPeEnNDIX A

DERIVATIONS OF SECTIONS 4.3 AND 4.4

PROPOSITION 1: The LM test statistic for testing the normality of

observations is given by equation (4.4).

Proof:
The problem of testing the normality of the observations
vl""’vN’ is the same as testing the normality of the
'regression disturbances' Upseseslly iﬁ the regression model
¥ = xiﬁ + ug, with K (the dimension of xi) equal to one,
x; =1, B=u and PR Vi So, the proof of this proposition
is a particular case of the proof given for Proposition 2 (see
below). Note that, in the present case, the MLE of 8 (i.e., p)
under HO: ¢y =cy = 0 is B = ﬁ . (v1-+...-+vN)/N = 3, which

implies that u; = vy =V, and that [ = (8, * ... +ug) /N = 0,
O
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PROPOSITION 2: The LM test statistic for testing the normality of

regression disturbances, LMN’ is given by equation (4.5).

Proof':

Define

c.-u,

1 i
¢(e,ui) - J___—__'_"__E dui ]

co-clui-l-czui
vV, =¢c -c,u +c:u2 8, = (B',c )", B, = (c,,c,)' and
i o i | 22> <l L 1552

6 = (ei,eé) '. Then the log-likelihood for the i'th observation

can be written as

rﬂ?
21(6) = -log [J_@ exp[¢(?,ui)]dui] + ¢(B,ui) i

We can show that

v.=(c.-u;)(c,=2¢c,u,)
xir exp[q)(ﬁ,ui)]U c M T 21 21 dui] dui
a5, (8) -

Vi
e
fﬂ exp[¢(8,u;) ldu,
v.~(c,~u,) (c,-2
- J 3(eymuy) (ey-2¢)u,) &
: v2 5
i
{ei=u,)
r exp[q:(e,ui)]U - —l—é—i'— dui]dui
34, (8) - vy (cl—ui

©.. e,

r exp[6(8,u,) Jdu, i

-0
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v

i Vy=(eg-uy) (-u,)
32,1(0) Lmexp[cp(e ,ui) ] U 2 dui du:.L

- i
acl -}
J eXPH(G,ui)]dUi
v,=(c;=u;) (-u,)
. [ : Wi W ik
J v 1
i
r' -(cl -u. )ui
exp[$(8,uy )]U dui dui 2
'321(6) J e vi (cl u )u
3c2 = - + J 2 dui s
r exp(¢(0,u;)]du, i

Setting €¢; = ¢ =0 in the above expressions, and noting that

under normality E[ui] = E[ug] = (0 and E[ui] = 3(:2, we obtain

ui(e) ) x:f_ui.
9B c g
o
2
321(6) - +_l_11__
: ]
Bco 2c 2c2
o
(A.1)
ag.(8) u, u%
e e d
ac1 € 3c2 -
o
4
32, (8) ooty
dc 4 2 ¢
2 4c°

(In particular, note that when ¢y = ¢y = 0, we have

rexP[fP(G-Ui)]dui = \/EZthO)).

Adding (A.1) from i =1 to N, and evaluating the resulting
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quantities at the MLE of 6 wunder HO: e) = c, =0 (i.e,

setting B = = (X‘X)-lx'y and g, = 32) we obtain

. N 32, (8) N ahzi(e) .
. % L3 = I
2 dc i 3c

i=1 i1 i=1 2

5 & Al
e Ea IR IS I (a.2)
3 2 4 4*2
u2 uz ‘12
~ NA. ~ ~
where My = .z ui/N and uiayi—xis.
i=1
N
Now we use (A.l) to compute Y(8) = ¢ (azi(e)/ae)(azi(e)/ae)',
i=1
obtaining
Y11 Vg ' Y13 V14]
1
V2 Yz ! Yy Wy
$@) =N |- - -~ - - T v g
L
Yia Vas ! V5 ¥y
1
Yie Vaa ! Vi ¥y
with
lp =l ? xix'ui
11 N 2
i=1 c,
N f ui ug
Vig =% I X, |-— 4=
e i=1 o Zc2 2c3
(.2 4
e owd B o B
13 N 1 2 3
i=1 L ¢ 3c
o )
1 N [ 3ui ui
Y, "% L %, |-—2+—2
14 N qm] i ‘ 4co 4c2
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4c2 Acl' 2c3

o] o] (o]
PR . S |
23 26" 320 &
(o] (o] cO

" e i y

Y ==+ -
4
Wl 16t 1602
where
N
Uj = 3 u‘}_/N .
i=1

Taking the expectation of ¥(8) (noting that - wnder normality -
E[ui]

Bluj] = E[v]] = E[u;] = E[u,] = E[n ] = Elu,] = 0,

E[ui] = Elu,] = ¢, E[“i] = E[y,] = 303; E[ugl = lch and
E[ugl = 105cf;), we obtain
_X‘X/co 0 : 0 o ]
0 1/ (2c§) 1 0 3/(2c°)
IT=EW(®)] =N |-~ --ommmm oo
0 0 : 2/(3c) 0
Lo 3(2e) v 0 6
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After evaluating 1 at 6 =0 (i.e. setting c = g2 = 52) ve
(o]
obtain
(3u,/2 0
R SRS e
22 "21°11°12 TN . (A.3)
0 2/3

Using (A.3) and (A.2) in (4.1) we obtain our result. O



